
Computation of the Hardness and the Problem of Negative Electron Affinities in Density
Functional Theory

David J. Tozer*,† and Frank De Proft* ,‡

Department of Chemistry, UniVersity of Durham, South Road, Durham DH1 3LE, U.K., and Eenheid Algemene
Chemie (ALGC), Vrije UniVersiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium

ReceiVed: June 28, 2005; In Final Form: August 4, 2005

The absolute hardness in density functional theory (DFT) is discussed, emphasizing the charge-transfer
excitation interpretation. Direct evaluation from the computed ionization potential and electron affinity is
intrinsically problematic when the affinity is negative; the calculated affinity exhibits a strong basis set
dependence, becoming near zero as diffuse functions are added. An alternative Koopmans-based approximation
using local functional eigenvalues uniformly and significantly underestimates the hardness. A simple correction
to the Koopmans expression is highlighted on the basis of a consideration of the integer discontinuity. The
resulting hardness expression does not require the explicit computation of the affinity and has a straightforward
interpretation in terms of the electronegativity. The correction eliminates the underestimation and gives hardness
values that do not degrade as the electron affinity becomes more negative. For systems with large negative
affinities, the values are an improvement over those from the other approaches. The success can be traced to
an implicit, unconventional approximation for the electron affinity, which outperforms the standard approach
when the affinity is significantly negative and which does not break down as the basis set becomes more
diffuse.

1. Introduction

In the conceptual approach to density functional theory (DFT),
chemical properties are identified as response functions of the
electronic energyE with respect to the number of electronsN
and the external (i.e., due to the nuclei) potentialV(r ) or both.1-6

Chemical concepts such as electronegativity,7,8 hardness,9-11 and
softness,9,10,12 which are often defined on an empirical basis,
thus acquire a mathematical definition, permitting their calcula-
tion from first principles. A series of chemical principles such
as Sanderson’s electronegativity equalization principle13 and
Pearson’s hard and soft acids and bases (HSAB)9,10,14 and
maximum hardness principles (MHP)10,15 receive theoretical
justification (for an overview, see ref 6). A recent derivation of
the HSAB principle has been presented by Ayers.16

The absolute hardness is an important quantity, as it serves
as input in HSAB and MHP studies of chemical reactivity and
stability. The concept was introduced by Pearson in the 1960s
within the framework of the classification of Lewis acids and
bases.9 The absolute hardnessη was quantified by Parr and
Pearson as the second derivative of the electronic energy of the
system with respect to the number of electrons at a constant
external potential.11

The operational definition of the exact, absolute hardness is
obtained by finite difference, assuming a quadratic relationship

betweenE andN.

whereI° andA° are the experimental vertical ionization potential
and electron affinity, respectively; the need for vertical quantities
reflects the differentiation at the constant external potential in
eq 1. Throughout this study, all ionization potentials and electron
affinities (calculated and experimental) refer to vertical rather
than adiabatic quantities. The hardness is therefore (half) an
exact charge-transfer (CT) vertical excitation energy between
two identical, infinitely separated molecules. A large number
of experimental hardness values have been compiled and used
by Pearson.10,17-19

The natural way to approximate the hardness in DFT is to
evaluate it directly from the calculated ionization potential and
electron affinity as

where I and A are obtained from total electronic energy
calculations on theN - 1, N, andN + 1 electron systems at
the neutral geometry

In the context of excitations, this represents a “delta SCF”
approximation to the CT excitation in eq 2. The experimental
ionization potential is positive and can typically be reproduced
to within a few tenths of an electronvolt by standard DFT
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functionals. A positive experimental electron affinity indicates
that the anion is stable with respect to electron loss, and in such
cases, the affinity, and thus the hardness, can generally be
calculated to a similar accuracy. It is important to observe,
however, that the highest occupied molecular orbital (HOMO)
eigenvalue is often positive for atomic and small molecular
anions, and this has been discussed in terms of self-interaction
error.20-23 A positive eigenvalue formally corresponds to a
nonnormalizable, continuum orbital, although in practice, the
orbital is constrained to be normalized by the finite basis set.
Note that this does not imply that expanding the basis set
through the addition of diffuse functions would cause the
electron to completely leave the system because this would raise
the energy to that of the neutral species, which would be
energetically unfavorable. As demonstrated by Jarecki and
Davidson,24 particular care is required when performing and
interpreting calculations on bound anions. Specifically, they
demonstrated that accurate numerical evaluation of Kohn-Sham
matrix elements involving diffuse basis functions leads to a
negative HOMO eigenvalue in F-, whereas it had previously
been calculated to be positive.22

In many cases, the experimental electron affinity is negative
rather than positive, as measured by electron transmission
spectroscopy methods.25,26 Such systems pose a fundamental
problem; the anion is unstable with respect to electron loss and
cannot be described by a standard DFT ground-state total energy
calculation (or, indeed, a ground-state calculation from any
electronic structure method). In practice, medium-sized basis
set DFT calculations on the anion do give energies above that
of the neutral species so reasonable estimates for the negative
affinity can be obtained. However, this simply reflects an
artificial binding of the electron by the finite basis set. The
addition of more diffuse functions allows the electron to leave
the system to dipole-bound or continuum states, and the anion
energy becomes close to that of the neutral species; the electron
affinity becomes near zero, and the hardness becomes∼I/2.
See refs 22 and 27-31 and references therein for further
discussion. This basis set dependence makes eq 3 a less-
attractive approach for calculating the hardness of a system with
a significant negative experimental electron affinity, although
it is often used in studies of chemical reactivity.

An alternative DFT approximation, originating from Koop-
mans’ theorem,32,33 is

whereεLUMO andεHOMO are Kohn-Sham one-electron eigen-
values associated with the lowest unoccupied molecular orbital
(LUMO) and the HOMO, respectively, from an approximate
DFT calculation on the neutral species. Unless otherwise stated,
we shall assume that all Kohn-Sham eigenvalues in the present
study are associated with local exchange-correlation approxima-
tions, such as generalized gradient approximations (GGA). In
the context of excitations, eq 6 then represents34 the adiabatic
time-dependent DFT (TDDFT) approximation to the CT excita-
tion in eq 2. The expression is appealing as it is equally
applicable to systems with positive and negative electron
affinities and only requires a single Kohn-Sham calculation.
However, it is well-known that it uniformly underestimates the
hardness; for an example, see ref 31, where the underestimation
is typically several electronvolts. Other methodologies to
compute the chemical hardness have also been proposed. These
have been reviewed in ref 6; more recent contributions include
refs 35 and 36 and references therein.

In a recent study,37 we demonstrated that the failure of local
functional TDDFT to describe CT excitations between infinitely
separated systems can be attributed to the influence of the integer
discontinuity in the exact exchange-correlation potential. It
follows that the same analysis explains the failure of the
Koopmans approximation, eq 6 (TDDFT), to represent the exact
hardness, eq 2 (CT). In section 2, we summarize the analysis
and use it to highlight a simple correction to eq 6. The resulting
hardness expression does not require the explicit computation
of the electron affinity and has a simple interpretation in terms
of the electronegativity. In section 3, the expression is used to
calculate the hardness of 14 small molecules, which have
increasingly negative experimental electron affinities. Results
are compared with those determined using eqs 3 and 6, together
with experimental values from eq 2. A scheme for computing
negative electron affinities is highlighted. Conclusions are
presented in section 4.

2. Theory

Using an ensemble treatment, Perdew et al.38 have demon-
strated that a plot of the exact electronic energy vs the number
of electrons comprises a series of straight-line segments. The
derivative discontinuities at integerN lead to integer disconti-
nuities in the exact exchange-correlation potential. The exact
potentials on the electron deficient and electron abundant sides
of the integer, denotedVXC

- and VXC
+ , respectively, differ by

some system-dependent positive constant∆XC at all points in
space

where∆XC is typically on the order of several electronvolts for
small, main-group molecules.39,40 For experimentalI° andA°
values corresponding to the removal of an electron from the
HOMO and the addition of an electron to the LUMO,
respectively, it can be shown38 that the HOMO eigenvalue
associated with the exactVXC

- is

(this condition has been widely discussed; for example, see refs
40-47) and the LUMO eigenvalue associated with the exact
VXC

+ is

Equations 8 and 9 are exact DFT analogues of the original,
approximate Koopmans theorem.33 In the spirit of eq 6, the exact
hardness, eq 2, is given by

Now, consider local exchange-correlation functionals such as
GGA, which do not exhibit an integer discontinuity; they are
continuum approximations. In regions where the HOMO and
LUMO are located, they approximately average over the
discontinuity44,48

although this breaks down at larger distances from the system.49

It follows from eq 11 that the HOMO and LUMO eigenvalues

VXC
+ - VXC

- ) ∆XC (7)

εHOMO
- ) -I° (8)

εLUMO
+ ) -A° (9)

η° )
εLUMO

+ - εHOMO
-

2
(10)

VXC ≈ VXC
+ + VXC

-

2
(11)

η )
εLUMO - εHOMO

2
(6)
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from a local functional are approximately shifted from the exact
values in eqs 8 and 9

and so do not satisfy the Koopmans relationships; see ref 40
for numerical examples of the former. Rearranging eqs 12 and
13 and substituting them into eq 10 gives

and so the Koopmans approximation, eq 6, underestimates the
exact hardness by approximately half the integer discontinuity.
This explains the systematic underestimation observed in ref
31. Following Chan,39 the latter contribution in eq 14 can be
termed a “hardness shift”, highlighting the fact that a single
Kohn-Sham calculation is not sufficient to determine the
hardness (see, also, ref 50). Equation 14 is nothing more than
a statement of the well-known band gap problem of local
DFT48,51 (e.g., see eq 10 of ref 48).

It is clear from eq 14 that an improved approximation to the
hardness could be obtained if∆XC was known. This quantity
can be approximated from correlated electron densities,39,40but
this is not a practical way to go forward. A more appealing
route is to use the fact that∆XC/2 is the exact asymptotic
potential for a functional that averages overVXC

+ andVXC
- . It is

therefore approximately equal to the exact asymptotic potential,
VXC(∞), of the local functional associated with the eigenvalues
in eq 14, which in turn can be well approximated by49

whereεHOMO and I are determined from the local functional
calculations. Hence,

(this can also be derived by substituting eq 8 into eq 12 and
settingI° ≈ I). Equation 16 can then be combined with eq 14
to give an alternative approximation for the hardness,

The hardness can therefore be approximated ashalf the
HOMO-LUMO gap plus the near-exact local functional
asymptotic potential. Equation 17 has a simple interpretation
in terms of the electronegativity. To see this, we rewrite it as

Now, from eqs 8, 9, 12, and 13,

whereø° is the exact electronegativity,

Hence, an alternative interpretation is that weapproximate the
negatiVe of the electronegatiVity as the aVerage of the HOMO
and LUMO eigenValues and then add an approximate ionization
potential to giVe an approximate hardness(becauseη° ) -ø°
+ I°). The key point is that the electronegativity can be
approximated using eq 19 because taking the sum approximately
cancels the contributions from∆XC in eqs 12 and 13; this has
been known for some time, e.g., see ref 48.

Equation 17 or, equivalently, eq 18 is a hardness approxima-
tion that does not explicitly involve the electron affinity. It would
therefore appear to be an attractive method for computing the
hardness in systems with negative affinities, where the direct
computation using eq 3 is problematic. Of course, such an
application would strictly be a departure from the ground-state
requirement because the negative affinity corresponds to an
anion that is not in its ground state. In the next section, we use
this expression to determine the hardness of a series of small
molecules, comparing the results with those from the standard
approaches in eqs 3 and 6, together with experimental values
from eq 2.

3. Results and Discussion

We consider the following set of representative, neutral
closed-shell molecules, containing first and second row atoms:
F2, Cl2, H2CO, C2H4, CO, PH3, H2S, HCN, HCl, CO2, NH3,
HF, H2O, and CH4. The experimental electron affinity is positive
for the first two molecules but becomes increasingly negative
across the series. Where possible, calculations were performed
at near-experimental reference geometries, taken from ref 52;
for the molecules where no sufficiently accurate reference
geometry was available, MP2/aug-cc-pVTZ geometries were
instead used. We have confirmed that the results have little
sensitivity to geometry; the same conclusions are obtained when
optimized geometries are used. All hardness calculations were
performed using the aug-cc-pVTZ basis set;53 see later for
further discussion. All calculations were performed using the
CADPAC54 program. Experimental values for the absolute
hardness were determined using eq 2, with vertical ionization
potentials and electron affinities from ref 55. Again, we stress
the importance of using vertical quantities; many experimentally
available ionization potentials and positive electron affinities
are adiabatic rather than vertical.

We determined the hardness using eqs 3, 6, and 17, using
four GGA functionals: PBE,56 OLYP,57,58 KT3,59 and 1/4.60

The eigenvalues, ionization potentials (calculated using eq 4),
and electron affinities (calculated using eq 5) in the three
expressions were all determined using the respective functionals.
The variations in the results due to the choice of functional were
minimal and were significantly smaller than the variations due
to the different hardness expressions. The conclusions regarding
the relative accuracy of the three hardness expressions are
therefore not dependent on the choice of functional. For the
present study, we present PBE results because this functional
is widely available in electronic structure codes. (In practice,
the best results from eq 17 were obtained using the 1/4
functional, which reflects the fact that this functional was
determined with an emphasis on exchange-correlation potentials;
however, the improvement over PBE is minimal and 1/4 is not
a globally applicable nor widely available functional.)

Table 1 presents hardness values calculated using eqs 3, 6,
and 17 with the PBE functional. The final column lists

εHOMO ≈ εHOMO
- +

∆XC

2
(12)

εLUMO ≈ εLUMO
+ -

∆XC

2
(13)

η° ≈ εLUMO - εHOMO

2
+

∆XC

2
(14)

VXC(∞) ≈ εHOMO + I (15)

∆XC

2
≈ εHOMO + I (16)

η )
εLUMO - εHOMO

2
+ εHOMO + I (17)

η )
εLUMO + εHOMO

2
+ I (18)

εLUMO + εHOMO

2
≈ -ø° (19)

ø° ) (I° + A°
2 ) (20)
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experimental values from eq 2. Mean and mean absolute errors,
relative to experimental data, are denotedd and|d|, respectively.
First, we consider the results from eq 3, which uses the
calculatedI andA values. The hardness is accurately reproduced
for F2 and Cl2, both of which have positive electron affinities
(as anticipated, the anion HOMO eigenvalues are positive in
both cases). However, the results degrade as the table is
descended, reflecting the increasingly negative experimental
electron affinity. To quantify this, we list, in Table 2, the
calculated and experimental ionization potentials and electron
affinities, which are the components of the hardness. The first
two columns of Table 2 compare the calculated and experimental
ionization potentials. In all cases, the computation is of
reasonable quality. The next column lists the calculated electron
affinities, which should be compared to the experimental values
in the final column. As the table is descended, the computed

affinities degrade; they are not sufficiently negative. The
hardness values in Table 1 become close toI/2, significantly
underestimating experimental values, with a mean absolute error
of 1.4 eV.

The second column of values in Table 1 lists the hardness
determined using the Koopmans approximation, eq 6. (For all
systems, the HOMO and LUMO eigenvalues are negative.) The
hardness values are significantly and uniformly underestimated,
reflecting the absence of the discontinuity term in eq 14. The
mean absolute error is 4.7 eV. The third column of values in
Table 1 is determined from eq 17, through the simple correction
of the Koopmans values. The uniform underestimation is
eliminated (the mean error is near zero), and the mean absolute
error is significantly reduced to 0.5 eV. Admittedly, this error
is larger than can be obtained from direct evaluation using eq
3 on systems with positive electron affinities, and this can be
traced to the inherent approximations used in the derivation of
eq 17. However, hardness values determined using this expres-
sion do not degrade as the table is descended; they are as
accurate for systems near the bottom of the table as they are
for F2 and Cl2.

It is pertinent to comment on the basis set dependence of the
results. The values in Table 1 were determined using the aug-
cc-pVTZ basis set. As discussed in section 1, the calculation
of electron affinities for systems with negative experimental
values benefits from the use of compact basis sets to enhance
the artificial binding of the electron. We have therefore also
performed calculations using the more compact (nonaugmented)
cc-pVTZ basis set. In line with the observations in refs 22, 27,
28, 30, and 31, the electron affinities of systems with negative
experimental values do improve, although the errors remain very
significant. The affinities are presented in Table 2. Ionization
potentials determined using this smaller basis set barely change
from the aug-cc-pVTZ values;61 the typical change is less than
0.1 eV. It follows that the hardness values determined using eq
3 do improve, although the mean absolute error (0.8 eV) remains
large. Even the moderate cc-pVTZ basis set is therefore not
capable of sufficiently binding the electron in systems with large
negative affinities. Furthermore, we observe that reducing the
basis set in this manner reduces the accuracy of the affinity,

TABLE 1: Hardness Values (eV), Determined Using the Three Approaches with the PBE Functional and the aug-cc-pVTZ
Basis Set, Compared to Experimental Values Determined Using the Data in Reference 55a

molecule
eq 3

η ) (I - A)/2
eq 6

η ) (εLUMO - εHOMO)/2
eq 17

η ) (εLUMO - εHOMO)/2 + εHOMO + I
exptl: eq 2

η° ) (I° - A°)/2
F2 7.36 1.83 7.72 7.2
Cl2 5.16 1.54 5.42 5.2
H2CO 5.66 1.79 6.29 6.2
C2H4 5.58 2.84 6.74 6.2
CO 7.44 3.52 8.34 7.9
PH3 5.44 3.05 6.84 6.2
H2S 5.38 2.73 6.82 6.3
HCN 7.17 3.97 8.88 8.0
HCl 6.56 3.47 8.15 8.0
CO2 7.20 4.10 8.69 8.8
NH3 5.70 2.73 7.51 8.2
HF 8.39 4.34 11.01 11.1
H2O 6.61 3.16 8.71 9.5
CH4 7.22 4.55 9.06 10.7

d/eV -1.3 -4.7 +0.1
|d|/eV +1.4 +4.7 +0.5

m +1.41 +1.48 +1.16
c/eV -1.30 +3.21 -1.31
R2 0.64 0.64 0.87

a d and|d| denote the mean and mean absolute errors, respectively, relative to experimental data.m, c, andR2 denote the gradient, the intercept,
and the correlation parameters, respectively, of the correlation plots, relative to experimental data.

TABLE 2: Ionization Potentials ( I ), Calculated Using Eq 4
with the aug-cc-pVTZ Basis Set, Compared to Experimental
Values (I°)a

molecule
eq 4
Ib I°

eq 5
Ab

eq 5
Ac

eq 22
Ab A°

F2 15.34 15.70 +0.63 -0.43 -0.10 +1.24
Cl2 11.18 11.49 +0.87 +0.47 +0.34 +1.02
H2CO 10.75 10.9 -0.58 -1.51 -1.84 -1.5
C2H4 10.66 10.68 -0.50 -2.46 -2.82 -1.8
CO 13.85 14.01 -1.02 -2.34 -2.82 -1.8
PH3 10.52 10.59 -0.37 -2.59 -3.16 -1.9
H2S 10.40 10.5 -0.37 -2.30 -3.24 -2.1
HCN 13.95 13.61 -0.38 -3.47 -3.81 -2.3
HCl 12.73 12.75 -0.39 -2.21 -3.58 -3.3
CO2 13.67 13.77 -0.72 -3.31 -3.70 -3.8
NH3 10.96 10.82 -0.44 -2.65 -4.06 -5.6
HF 16.32 16.12 -0.47 -2.91 -5.70 -6.0
H2O 12.80 12.62 -0.42 -2.71 -4.62 -6.4
CH4 13.97 13.6 -0.47 -2.75 -4.15 -7.8

a Also listed are the electron affinities calculated using the standard
approach, eq 5, with the aug-cc-pVTZ and cc-pVTZ basis sets; the
electron affinity calculated using eq 22 with the aug-cc-pVTZ basis;
and the experimental electron affinity,A°. All calculated quantities were
obtained using the PBE functional. All quantities are in eV.b Values
were calculated using the aug-cc-pVTZ basis set.c Values were
calculated using the cc-pVTZ basis set.
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and hence the hardness, of F2 and Cl2. The artificial improve-
ment of systems lower in the table is therefore achieved at the
expense of the systems at the top of the table. Hardness values
determined using eq 17 are much less affected by the reduction
in the basis set; the mean absolute error increases slightly to
0.6 eV. We have also performed calculations using a doubly
augmented daug-cc-pVTZ basis set, which is obtained by
augmenting the aug-cc-pVTZ basis set (used in Table 1) with
additional diffuse functions, with exponents determined from

the geometric progression. Hardness values from eq 17 are
essentially identical to those of Table 1, demonstrating that basis
set convergence is reached without the need for double
augmentation. By contrast, the results from eq 3 are different
from those of Table 1, which can be traced to the calculated
electron affinities. For F2 and Cl2, the calculated affinities
increase to approximately one electronvolt whereas for the
remaining molecules the affinities are very close to zero. For
five of the molecules, convergence problems prevented the
computation of the anion energy, demonstrating the difficulty
of using such diffuse basis sets for anion calculations.

In most applications, the hardness is used to discuss trends
in chemical reactivity and stability. Thus, it is important that
calculated values exhibit a good correlation with experimental
values. To investigate this, we present, in Table 1, the line
parametersm (gradient),c (intercept), andR2 (square of the
correlation coefficient) describing the correlation of the three
hardness expressions with the experimental values. Calculations
using the conventional approaches (eqs 3 and 6) have similar
slopes (m ) +1.41 to+1.48) and correlation parameters (R2 )
0.64), which are far from unity. The intercept is particularly
large (c ) +3.21 eV) when eq 6 is used. The correlation is
much better for the third approach, with an improved slope (m
) +1.16) and correlation parameter (R2 ) 0.87). The improved
correlation is clearly evident in Figure 1, which presents the
correlation plots for the three methods.

It is informative to consider the two contributions in eq 17.
In a previous study,40 we determined near-exact HOMO-
LUMO eigenvalue differences from high-quality, correlated
electron densities using the Zhao-Morrison-Parr (ZMP) ap-
proach.62 These were then subtracted from experimentalI - A
values to calculate∆XC. These earlier calculations allow us to
judge the accuracy of the two components of the hardness in
eq 17. For a subset of 10 of the present 14 molecules, we
compared the first and second terms in eq 17 with the
corresponding reference values from ref 40. The mean absolute
error for the first term (half of the HOMO-LUMO gap) is 0.3
eV, and the error for the second term (half of the discontinuity)
is 0.6 eV. Errors in both terms are therefore significant, although
that for the latter is larger.

Next, we comment on hybrid functionals. Our derivation of
eq 17 assumed that the potential approximately averages over
the discontinuity in the exact potential, which is appropriate
for functionals such as GGA (and the local density approxima-
tion, LDA) but not for hybrids, which include a fraction of exact
orbital exchange. Nevertheless, we have observed that the
expression does still work reasonably well with hybrids, such
as B3LYP.58,63 The explanation lies in eq 18: HOMO eigen-
values from hybrids are more negative than those of GGAs,
but there is a compensating increase in the LUMO eigenvalue,
such that the sum is approximately equal to the GGA value, a
reasonable approximation to minus the electronegativity. To
quantify accuracy, we have determined hardness values, using
eq 17 with the B3LYP functional, that have the following mean
absolute errors and correlation parameters:

Although these results are more accurate than the corresponding

Figure 1. Correlation of the hardness, calculated using (a) eq 3, (b)
eq 6, and (c) eq 17, with experimental values. Data are taken from
Table 1.

|d| ) 0.7 eV

m ) +1.23

c ) -1.52 eV

R2 ) 0.78 (21)

Hardness and Negative Electron Affinities in DFT J. Phys. Chem. A, Vol. 109, No. 39, 20058927



B3LYP values from eqs 3 and 6, they are still inferior to the
third column of PBE results in Table 1 and are not recom-
mended.

All the molecules in Table 1 are closed-shell, neutral species.
We have also considered the closed-shell cations Li+, Na+, Be2+,
Mg2+, B3+, and Al3+. For such systems, it is well known that
eq 3 provides very accurate hardness estimates because one only
needs to compute the higher ionization potentials of the neutral
species and not the electron affinities.61 For example, for B3+,
eq 3 is equivalent to subtracting the third and forth ionization
potentials of the B atom. As anticipated, results from eq 17 are
an improvement over the Koopmans values from eq 6 but are
unable to compete with the direct evaluation using eq 3. We
have also considered closed-shell anions. For such systems, the
HOMO and LUMO eigenvalues tend to be positive and so the
results exhibit an unacceptable sensitivity to the basis set. In
future work, we shall investigate the hardness of open-shell
molecules. Generalization of eq 17 will lead to spin-dependent
hardness values.39 The analogue of Koopmans’ theorem with
spin-polarized DFT for systems with an open-shell ground state
has been discussed by Gritsenko et al.64,65

Explicit Computation of Negative Electron Affinities. The
focus of this paper has been the evaluation of the hardness
without the explicit computation of the electron affinity. This
has been achieved by implicitly approximating the affinity in
terms of the Kohn-Sham eigenvalues and the ionization
potential. Specifically, eq 17 is exactly equivalent to a direct
evaluation of the hardness using eq 3, with a conventional
ionization potential but an electron affinity given by

This can be easily verified: substituting eq 22 into eq 3 gives
eq 17. Equation 22 can also be derived from eqs 9, 13, and 16
(see, also, eq 19 of the present study and eq 11 of ref 48). The
differences between the hardness values in the first and third
columns of Table 1 can therefore be regarded as arising entirely
because of the different electron affinity approximations. The
former uses the standard evaluation, eq 5, and the latter uses
eq 22; both use the ionization potential from eq 4. The improved
hardness values from the latter approach simply reflect more
accurate affinities, on average, from eq 22. To quantify this,
we present, in Table 2, electron affinities determined using this
expression with the aug-cc-pVTZ basis set; values using the
daug-cc-pVTZ basis set are essentially identical. For systems
with significant negative experimental affinities, the results are
a notable improvement over both the aug-cc-pVTZ and cc-pVTZ
results from eq 5. The new results exhibit a correlation parameter
of 0.76, compared to values of 0.30 and 0.48 from the standard
expression with the large and small basis sets, respectively. The
computation of negative electron affinities is an important
research area (e.g., see refs 29 and 30). Equation 22 may be
useful for providing qualitative predictions in such studies,
overcoming the fundamental basis set breakdown of the standard
approach.

4. Conclusions

The calculation of the absolute hardness is an important aspect
of conceptual DFT. The conventional approach, where the
hardness is evaluated directly from computed DFT ionization
potentials and electron affinities, works reasonably well for
molecules with positive electron affinities (however, see refs
20-24). This direct approach is less appropriate for systems
with a significant negative experimental electron affinity. In such

cases, the extra electron is only bound in the DFT calculation
by the finite basis set. For the systems in the lower part of Table
1, even the modest cc-pVTZ basis set is completely unable to
provide quantitative estimates of the affinity. Enhancing the
basis set with diffuse functions allows the electron to leave the
system to dipole-bound or continuum states; so, the electron
affinity becomes near zero, and the hardness is close toI/2.

Using an analysis based on earlier studies,38,48 we have
reiterated why an alternative approximation, based on Koop-
mans’ theorem33 using local functional eigenvalues, significantly
underestimates the hardness. We have then used this analysis
to highlight a hardness approximation that can be interpreted
as a simple correction to the Koopmans expression (see eq 17)
or as the addition of an approximate ionization potential to the
negative of an approximate electronegativity (see eq 18 and the
discussion below). Only the eigenvalues and the ionization
potential from a local functional are required; the electron
affinity does not need to be computed. The correction eliminates
the uniform underestimation of the Koopmans expression. For
the molecules in Table 1, the inherent approximations in the
derivation lead to relatively large errors of 0.5 eV on average;
however, the results do not degrade as the electron affinity
becomes more negative, and the correlation with experimental
values is good. For systems with large negative experimental
electron affinities, the results are an improvement over those
from the conventional approaches. The scheme may prove useful
in conceptual DFT studies.

A third interpretation of the scheme is that it evaluates the
hardness directly using eq 3, with a conventional approximate
ionization potential from eq 4 but an unconventional electron
affinity from eq 22. This unconventional electron affinity
expression may be useful in studies of negative affinities,
overcoming the fundamental basis set breakdown of the standard
approach.

Finally, we reiterate the link between the present work and
the calculation of the electronegativity, the direct calculation
of which is also problematic when the affinity is negative. As
indicated in eq 19, the discontinuity contributions approximately
cancel for the electronegativity and so it can be approximated
as minus the average of the HOMO and LUMO eigenvalues
(which is equivalent to the addition of an approximateI to the
affinity in eq 22). The accuracy of the electronegativity
calculated in this manner will be close to that of the hardness
in eq 17 because the two quantities differ only by the ionization
potential, which can be calculated to good precision.
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